skip to main content


Search for: All records

Creators/Authors contains: "Rangarajan, Anand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Road safety has always been a crucial priority for municipalities, as vehicle accidents claim lives every day. Recent rapid improvements in video collection and processing technologies enable traffic researchers to identify and alleviate potentially dangerous situations. This paper illustrates cutting-edge methods by which conflict hotspots can be detected in various situations and conditions. Both pedestrian–vehicle and vehicle–vehicle conflict hotspots can be discovered, and we present an original technique for including more information in the graphs with shapes. Conflict hotspot detection, volume hotspot detection, and intersection-service evaluation allow us to understand the safety and performance issues and test countermeasures comprehensively. The selection of appropriate countermeasures is demonstrated by extensive analysis and discussion of two intersections in Gainesville, Florida, USA. Just as important is the evaluation of the efficacy of countermeasures. This paper advocates for selection from a menu of countermeasures at the municipal level, with safety as the top priority. Performance is also considered, and we present a novel concept of a performance–safety trade-off at intersections. 
    more » « less
  3. Travel-time estimation of traffic flow is an important problem with critical implications for traffic congestion analysis. We developed techniques for using intersection videos to identify vehicle trajectories across multiple cameras and analyze corridor travel time. Our approach consists of (1) multi-object single-camera tracking, (2) vehicle re-identification among different cameras, (3) multi-object multi-camera tracking, and (4) travel-time estimation. We evaluated the proposed framework on real intersections in Florida with pan and fisheye cameras. The experimental results demonstrate the viability and effectiveness of our method. 
    more » « less
  4. As a part of road safety initiatives, surrogate road safety approaches have gained popularity due to the rapid advancement of video collection and processing technologies. This paper presents an end-to-end software pipeline for processing traffic videos and running a safety analysis based on surrogate safety measures. We developed algorithms and software to determine trajectory movement and phases that, when combined with signal timing data, enable us to perform accurate event detection and categorization in terms of the type of conflict for both pedestrian-vehicle and vehicle-vehicle interactions. Using this information, we introduce a new surrogate safety measure, “severe event,” which is quantified by multiple existing metrics such as time-to-collision (TTC) and post-encroachment time (PET) as recorded in the event, deceleration, and speed. We present an efficient multistage event filtering approach followed by a multi-attribute decision tree algorithm that prunes the extensive set of conflicting interactions to a robust set of severe events. The above pipeline was used to process traffic videos from several intersections in multiple cities to measure and compare pedestrian and vehicle safety. Detailed experimental results are presented to demonstrate the effectiveness of this pipeline. 
    more » « less
  5. The increase of computer processing speed is significantly outpacing improvements in network and storage bandwidth, leading to the big data challenge in modern science, where scientific applications can quickly generate much more data than that can be transferred and stored. As a result, big scientific data must be reduced by a few orders of magnitude while the accuracy of the reduced data needs to be guaranteed for further scientific explorations. Moreover, scientists are often interested in some specific spatial/temporal regions in their data, where higher accuracy is required. The locations of the regions requiring high accuracy can sometimes be prescribed based on application knowledge, while other times they must be estimated based on general spatial/temporal variation. In this paper, we develop a novel multilevel approach which allows users to impose region-wise compression error bounds. Our method utilizes the byproduct of a multilevel compressor to detect regions where details are rich and we provide the theoretical underpinning for region-wise error control. With spatially varying precision preservation, our approach can achieve significantly higher compression ratios than single-error bounded compression approaches and control errors in the regions of interest. We conduct the evaluations on two climate use cases – one targeting small-scale, node features and the other focusing on long, areal features. For both use cases, the locations of the features were unknown ahead of the compression. By selecting approximately 16% of the data based on multi-scale spatial variations and compressing those regions with smaller error tolerances than the rest, our approach improves the accuracy of post-analysis by approximately 2 × compared to single-error-bounded compression at the same compression ratio. Using the same error bound for the region of interest, our approach can achieve an increase of more than 50% in overall compression ratio. 
    more » « less